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1 Smooth functions and Lie Derivatives

Let N and M both be manifolds, and lets consider a diffeomorphism between
them φ : M → N . And consider also an smooth function f : N → R. Let’s discuss
some key concepts;

• Pull back can be thought as a way of making the function f acting on a ele-
ment of M , this can be achieved by composition with the diffeomorphism
in the following way:

f ◦φ :M→R (1.1)

• Push Forward; in the same way as f , the diffeomorphism maps one point p ∈
M to another point φ(p) ∈ N so naturally it also carries p’s tangent vectors.
By this we can define a map φ∗ : Vp→ Vφ(p) in which this new tangent vector
acts like:

(φ∗v)(f ) ≡ v(f ◦φ) (1.2)

Also extending these concepts we might want to pull back a dual vector from
φ(p) ∈N to its corespondent dual vector at p ∈M. We define the map φ∗ : V ∗φ(p)→
V ∗p by requiring that ∀va ∈ Vp:

(φ∗µ)av
a = µa(φ

∗v)a (1.3)

And thus one can generalize this process to a tensors of type (k, l) both at
φ(p) and p by noticing since φ∗ is a diffeomorphism it has and inverse (φ−1)∗

which takes vectors from Vφ(p) to Vp and thus by a tensor T b1...bk
a1...al we define

(φ∗T )b1...bk
a1...al by:

T
b1...bk

a1...al (φ∗µ1)b1
. . . ([φ−1]∗tl)

a
l = (φ∗T )b1...bk

a1...al (µ1)b1
. . . (tl)

a
l (1.4)

If we now have some diffeomorphism φ :M→M this means that on our man-
ifold we will have the same geometric properties, and statements affirmed in one
frame can be translated fully to the other frame, with that we can compare tensors
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fields such as T and φ∗T , where T is a tensor field on our manifold M. One im-
portant scenario is when φ is a symmetry transformation for the tensor field T i.e.
φ∗T = T . A very special case is with the metric tensor gab, if exist some symmetry
transformation for φ for gab such that (φ∗gab) = gab, φ is called a isometry. Base on
this we can also define some Gauge Freedom on general relativity.

Suppose we have two space-times described by manifold and metric (N,g)
and other by (M,g ′). If exist an diffeomorphism φ : N →M and g ′ = φ∗g then the
two space-times are said to be indistinguishable, they describe the same physics
and any law or statement made in one space-time can be translated to the other,
we say this is a Gauge Freedom in general relativity, for more detailed discussion
see [3].

If we have a parameter in this diffeomorphism this would define tangent vec-
tors va, since we can now compare different tensor fields by the action of φ, it’s
possible to analyse the difference between the tensor field and its diffeomorphism
counterpart as the parameter goes to zero, this will be exactly the definition of the
Lie derivative. The notion of a derivative of a tensor field with respect to some
tangent vector va.

Definition 1 (Lie Derivative). Let φt :M→M be a diffeomorphism at one param-
eter and va = ( d

dt )
a its tangent vector. We define the Lie derivative of a tensor field

T ∈ T (k, l) by:

£vT = lim
t→0

φ∗−tTφ(t) − T
t

(1.5)

The Lie derivative have some interesting properties: proofs

• £vT ∈ T (k, l)→T (k, l)

• £v(T ⊗ S) = £vT ⊗ S + T ⊗ £vS

• £v(λ1S +λ2T ) = λ1£vS +λ2£vT

• £v
[
Cij(T )

]
= Cij(£vT )

• £vf = v(f )

• £vw = [v,w]

Note also if the Lie derivative is zero everywhere, i.e. £vT = 0 if and only if φt is a
symmetry transformation of T ∀t. Analysing the Lie derivative and also remem-
bering the commutator using an derivative operator ∇b we find that:

£vµa = vb∇bµa +µb∇avb (1.6)
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And for an arbitrary tensor field T a1...ak
b1...bl

:

£vT
a1...ak

b1...bl
= vc∇cT

a1...ak
b1...bl

−
k∑
i=1

T
a1...c...ak

b1...bl
∇cvai +

l∑
j=1

T
a1...ak

b1...c...bl
∇bjvc

(1.7)

2 Killing Vector Fields

In the special case where our diffeomorphism one parameter group is a isometries,
i.e. φ∗tgab = gab , the vector field which generate φt , ξa is called a Killing Vector
Field. Note that if φt is a group of isometries than the Lie derivative of the metric
is zero, so a sufficient condition is £ξgab = 0 which lead us to Killing’s equation:

∇aξb +∇bξa = 0 (2.1)

Where ∇a is the derivative operator associated with the metric.

Proposition. Let ξa be a Killing vector field and let γ be a geodesic with tangent
ua. Then ξaua is constant along γ

Proof. We need to proof that:

ub∇b(ξaua) = 0 using the product rule (2.2)

ub∇b(ξaua) = ua
(
ub∇bξa

)
+ ξau

b∇bua (2.3)

Right hand side is zero because its just the geodesic equation. Left hand side
generates the contraction between two tensors. One tensor is totally symmetric
uaub = ubua and the other is totally antysymmetric by Killing’s Equation ∇bξa =
−∇aξb. If we remember the contraction between a symmetric and antysymmetric
tensor is always zero because we write:

S(ab)A[ab] = −S(ab)A[ba] = −S(ba)A[ba] (2.4)

If we rename our dummy indices we ended up getting

S(ab)A[ab] = −S(ab)A[ab] (2.5)

The only number which satisfies that is zero. And thus:

ub∇b(ξaua) = 0 (2.6)

Killing Vector fields define orbits in which geometric properties of the manifoldM
do not change. Also, we can use it do describe free falling particles which describe
a timelike geodesic and light rays , described by null geodesics (remember these
definitions work around the tangent vectors norm, i.e. |u| = gabu

aub). So we can
say that our symmetry φt give rise to a conserved quantity for particles and light
rays.
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Using the Riemann Tensor definition we have:

∇a∇bξc −∇b∇aξc = R d
abc ξd (2.7)

However if we use Killing’s Equation;

∇a∇bξc +∇b∇cξa = R d
abc ξd (2.8)

Now doing this cyclic permutation and summing for (abc) + (bca)− (cab) we arrive
at the following expression:

2∇b∇cξa =
(
R d
abc +R d

bca −R
d

cab

)
ξd

= −2R d
cab ξd

(2.9)

So for any killing field:
∇a∇bξc = −R d

bca ξd (2.10)

This means that killing field are completely determined by their values ξa and
∇aξb at any point p ∈M, if we want to know their values at another point q ∈M
we solve the system of ordinary differential equations:va∇aξb = vaLab

va∇aLbc = −R d
bca ξdv

a
(2.11)

Where Lab ≡ ∇aξb and vb is the tangent of the curve connecting points p and q on
the manifold M. We also have the following corollaries:

• If Killing fields and its derivative vanish at some point, so they vanish ev-
erywhere

• If dimM = n then, we have at most
n(n+ 1)

2
LI killing fields and parameters

group of isometries.

Another useful quantity which we can define is some current in terms of killing
vector and energy momentum tensor:

Jµ = −T µνξν (2.12)

But energy momentum tensor obeys:

Tµν = Tνµ and ∇µT
µ
ν = 0 (2.13)

With these we have for the current:

−∇µJµ =
(
∇µT µν

)
ξν + T µν∇µξν = 0 (2.14)
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By Stokes Theorem then: ∫
r
∇µJν = 0 (2.15)

Which we can decompose in:∫
∂r
nµJµ =

∫
Σ1

nµ(1)Jµ +
∫
Σ2

nµ(2)Jµ = 0 (2.16)∫
Σ1

nµ(1)Jµ =
∫
Σ2

−nµ(2)Jµ (2.17)

Which implies that nµJµ is a quantity which is conserved , where nµ is a uni-
tary time-like vector. One good example is to search for the killing vectors of
the Minkowisky space, to search for symmetries is to solve [£ξg]µν = 0 for the
minkowisky metric. The killing equation then writes

∂µξη +∂νξµ = 0 (2.18)

If we derive and using killing property of permutation
∂µ∂λξν +∂λ∂νξµ = 0

−∂ν∂µξλ −∂µ∂λξν = 0

∂λ∂νξµ +∂ν∂µξλ = 0

(2.19)

Summing over the 3 equations we arrive

∂λ∂νξµ = 0 (2.20)

Which implies the killing vector field is something of the form:

ξµ = a
µ
ν x

ν + bµ (2.21)

Where a
µ
ν and bµ are constants. Using the metric we find:

ξλ = ηλµξ
µ = ηλµa

µ
ν x

µ + ηλµb
µ = aλνx

ν + bλ (2.22)

Plugging into killing’s equation once again we find

∂µ
(
aνλx

λ + bν
)

+∂ν
(
aµσx

σ + bµ
)

(2.23)

aµν = −aνµ (2.24)

This take us to 6 independent parameters on tensor a and 4 parameters on vector
b which leed us to 10 total symmetries in Minkowyski space which are:

• 3 Boost Symmetry (x,y,z)

• 3 Rotation Symmetry (x,y,z)

• 4 Translation symmetries (t,x,y,z)

We can plot the vector field for Boost and Rotation by considering individual and
independent parameters on a

µ
ν :
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Figure 1. Lorentz Boost on the x direction vector field
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Figure 2. Rotation symmetry field for plane tx
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Figure 3. Temporal translation symmetry field
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