Functional Derivatives

João Lucas Rodrigues

March 21, 2022

1 Functional Derivative

Let $x = (x_1, ..., x_n) \in \mathbb{R}^n$, f(x) be a function and F a functional F[f]. The functional derivative $\frac{\delta F}{\delta f(x)}$ at point x its defined to be the following:

$$\left(\frac{d}{d\varepsilon}F[f+\varepsilon\sigma]\right)_{\varepsilon=0} = \int_{\mathbb{R}^n} d^n\sigma(x) \frac{\delta F}{\delta f(x)}$$
(1.1)

Where $\sigma(x)$ is any function and ε is a parameter.

The functional derivative have the following properties:

$$\frac{\delta}{\delta f(x)}(c_1F_1+c_2F_2)=c_1\frac{\delta F_1}{\delta f(x)}+c_2\frac{\delta F_2}{\delta f(x)}$$

 $\frac{\delta}{\delta f(x)}(F_1F_2) = \frac{\delta F_1}{\delta f(x)}F_2 + F_1\frac{\delta F_2}{\delta f(x)}$

• If $\Psi = \Psi(F)$ is a differential function of the functional F then we have the chain rule:

$$\frac{\delta \Psi}{\delta f(x)} = \frac{d\Psi}{dF} \frac{\delta F}{\delta f(x)}$$

For example lets consider

$$F[f] = \int_{\mathbb{R}^n} d^n x f(x)$$

So we have the following:

$$F[f + \varepsilon \sigma] = F[f] + \varepsilon F[\sigma] = F[f] + \varepsilon \int_{\mathbb{R}^n} d^n x \sigma(x)$$

$$\implies \frac{d}{d\varepsilon} (F[f + \varepsilon \sigma])_{\varepsilon=0} = \int_{\mathbb{R}^n} d^n x \sigma(x)$$

$$\implies \frac{\delta F}{\delta f(x)} = 1$$

Another example is to consider the following functional:

$$F[f] = \int d^n x d^n y K(x, y) f(x) f(y)$$

Until first order we have:

$$F[f + \varepsilon \sigma] = F[f] + \varepsilon \int d^n x d^n y K(x, y) \sigma(x) f(y) + \varepsilon \int d^n x d^n y K(x, y) f(x) \sigma(y)$$

$$\implies \left(\frac{d}{d\varepsilon} F[f + \varepsilon \sigma]\right)_{\varepsilon=0} = \int d^n x d^n y K(x, y) \sigma(x) f(y) + \int d^n x d^n y K(x, y) f(x) \sigma(y)$$

$$\implies \frac{\delta F}{\delta f(x)} = \int d^n y [K(x, y) + K(y, x)] f(y)$$

We also have functionals with parameters dependency, such as:

$$F_x[f] = \int_{\mathbb{R}^n} d^n x' K(x, x') f(x')$$
$$\frac{\delta F_x}{\delta f(y)} = K(x, y)$$

With this we can construct:

$$f(x) = \int_{\mathbb{R}^n} d^n x' \delta(x - x') f(x')$$

$$\implies \frac{\delta f(x)}{\delta f(y)} = \delta(x - y)$$

 $F[f_1,\ldots,f_n]$ n variables functional, the functional derivative $\frac{\delta F}{\delta f_k(x)}$ its build naturally by:

$$(\frac{d}{d\varepsilon}F[f_1+\varepsilon\sigma_1,\ldots,f_N+\varepsilon\sigma_N])_{\varepsilon=0}=\int\,d^nx\,\sum_{k=1}^N\,\sigma_k(x)\frac{\delta F}{\delta f_k(x)}$$

And thus we can write the differential of the functional as:

$$\delta F = \int d^n x \sum_{k=1}^N \frac{\delta F}{\delta f_k(x)} \delta f_k(x)$$

2 Field Theory in Hamiltonian Formalism

Firstly using the differential we just saw we can write down the action variation (which is null) given a Lagrangian density \mathcal{L} . Here $x = x^{\mu}$

$$\frac{\delta S}{\delta \phi_{\alpha}(x)} = \frac{\partial \mathcal{L}}{\partial \phi_{\alpha}(x)} - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{\alpha}(x)} \right) - \nabla \left(\frac{\partial \mathcal{L}}{\partial (\nabla \phi_{\alpha}(x))} \right)$$

In which we can write down a compact form of Lagrange equations as

$$\frac{\delta S}{\delta \phi_{\alpha}(x)} = 0$$

The canonical momentum conjugate to the field $\phi_{\alpha}(x)$ is defined as:

$$\pi^{\alpha}(x) = \frac{\partial \mathcal{L}}{\partial \dot{\phi}_{\alpha}(x)}$$

And we define Hamiltonian density \mathcal{H} by:

$$\mathcal{H} = \sum_{\alpha} \pi^{\alpha} \dot{\phi}_{\alpha} - \mathcal{L}$$

And the hamiltonian of the system is given by:

$$H[\phi_{\alpha},\pi^{\alpha}]=\int d^3x \mathcal{H}(\oint_f(), \oint \oint_f, \overline{f}^f(), \oint \overline{f}^f())$$

The action is written as:

$$S = \int_{\Omega} d^4x \Big\{ \sum \pi^{\alpha} \dot{\phi}_{\alpha} - \mathcal{H} \Big\}$$

$$\delta S = \int_{\Omega} d^4x \sum_{\alpha} \Big\{ \pi^{\alpha} \delta \dot{\phi}_{\alpha} + \delta \pi^{\alpha} \dot{\phi}_{\alpha} - \frac{\partial \mathcal{H}}{\partial \phi_{\alpha}} \delta \phi_{\alpha} - \frac{\partial \mathcal{H}}{\partial \nabla \phi_{\alpha}} \delta (\nabla \phi_{\alpha}) - \frac{\partial \mathcal{H}}{\partial \pi^{\alpha}} \delta \pi^{\alpha} - \frac{\partial \mathcal{H}}{\partial (\nabla \pi^{\alpha})} \delta (\nabla \pi^{\alpha}) \Big\}$$

$$= \int_{\Omega} d^4x \sum_{\alpha} \Big\{ \left(-\dot{\pi}^{\alpha} - \frac{\partial \mathcal{H}}{\partial \phi_{\alpha}} + \nabla \frac{\partial \mathcal{H}}{\partial (\nabla \phi_{\alpha})} \right) \delta \phi_{\alpha} + \left(\dot{\phi}_{\alpha} - \frac{\partial \mathcal{H}}{\partial \pi^{\alpha}} + \nabla \frac{\partial \mathcal{H}}{\partial (\nabla \pi^{\alpha})} \right) \delta \pi^{\alpha} \Big\}$$

Which leed us to Hamilton Equations by letting $\delta S = 0$

$$\dot{\phi}_{\alpha} = \frac{\partial \mathcal{H}}{\partial \pi^{\alpha}} - \nabla \frac{\partial \mathcal{H}}{\partial (\nabla \pi^{\alpha})}; \tag{2.1}$$

$$\dot{\pi}^{\alpha} = -\frac{\partial \mathcal{H}}{\partial \phi_{\alpha}} + \nabla \frac{\partial \mathcal{H}}{\partial (\nabla \phi_{\alpha})} \tag{2.2}$$

Or in a condensed form:

$$\dot{\phi}_{\alpha}(x) = \frac{\delta \mathcal{H}}{\delta \pi^{\alpha}(x)}; \tag{2.3}$$

$$\dot{\pi}^{\alpha} = -\frac{\delta \mathcal{H}}{\delta \phi_{\alpha}(x)} \tag{2.4}$$