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1 Functional Derivative

Let x = (xy,..., x,) € R", f(x) be a function and F a functional F[f]. The functional derivative
% at point x its defined to be the following:
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Where o(x) is any function and ¢ is a parameter.

The functional derivative have the following properties:
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« If ¥ = ¥(F) is a differential function of the functional F then we have the chain rule:
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For example lets consider
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So we have the following:

F[f + ec] = F[f] + €F[o] = F[f] + e/ d"xo(x)
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Another example is to consider the following functional:

FIf] = / " xd"yK (x, Y)f () (3)

Until first order we have:

FIf + 0] = FIf] + ¢ / dxd"yK(x, y)o()f () + ¢ / d"xd"yK (x, y)f (x)o()
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We also have functionals with parameters dependency, such as:
F[f] = / d"x"K(x, x")f(x")
]R)’l

SF,
5f(y

K(x,y)

With this we can construct:
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F[fi, ..., fa] n variables functional, the functional derivative 55 its build naturally by:
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And thus we can write the differential of the functional as:
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2 Field Theory in Hamiltonian Formalism

Firstly using the differential we just saw we can write down the action variation (which is null)
given a Lagrangian density L. Here x = x*
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In which we can write down a compact form of Lagrange equations as
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The canonical momentum conjugate to the field ¢,(x) is defined as:

oL
m(x) = —
I¢a(x)
And we define Hamiltonian density H by:
H=> n¢.- L

And the hamiltonian of the system is given by:

H{ o 7] = / FXH(E0. $67. 77 0.4770)

The action is written as:
S = /d%{Zﬂ“éa - H}
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Which leed us to Hamilton Equations by letting §S = 0

oH oH

Po = Pyl va(vmx); (2.1)
o= g (2.2)
0 0(Veh) '
Or in a condensed form: 51
Palx) = 5 o’ (2.3)
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